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Figure 1: Our prototype is a 3D-printed smart insole. In the equipped with two air chambers connected to electronic valves,
as well as air pressure sensors. A microcontroller drives the pressure valves as well as sensor data from an accelerometer. a)
Back-side of the prototype, b) Layers, how they are assembled, c) Top view of the assembled prototype.

ABSTRACT
We present a footwear prototype that can detect activities, distin-
guish terrains, and estimate the user’s weight. The insole features
two air chambers with pressure sensors and a 6-DOF IMU. A ma-
chine learning model, a decision tree was trained to distinguish
standing, walking, and running. Further, we can discriminate be-
tween differentiate terrains, such as soft sand, asphalt, and grass.
Moreover, we showcase how the air pressure sensors can be utilized
to provide a weight estimation.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Applied computing→ Health informatics.
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1 INTRODUCTION
In recent years, there has been an increasing interest in foot inter-
faces [9]. For accurately detecting gait and related parameters, liter-
ature showcased a great number of technology approaches, which
include the following sensors: Inertial Measurement Units (IMUs)
for measuring movements, rotation, and angular velocity [18, 22],
Pressure sensors for measuring ground contact and calculating the
center of pressure [11, 12], Temperature and humidity sensors for
monitoring diabetic foot ulceration [25, 26], Strain gauges for recog-
nizing stretch, bend, and changing pressure [5], Speed sensors for
calculating physical forces [19], GPS for tracking location, height
differences, speed, and distance, Capacitive sensors for detecting
walking styles, foot gestures, and floor type [15, 23], Infrared light
sensors for measuring heat and blood flow, and detecting blood
sugar [6, 7, 14], Microphone sensors for determining gait param-
eters [29, 29] and Cameras for tracking of posture and gait, and
detecting terrain [2, 3, 30].

We propose a different method for detecting user data, such as
their activity, ground information, and user weight. Our developed
artifact has particularly two air chambers with pressure sensors to
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measure change evoked by the wearer. We validated our artifact
through three small experiments.

In this paper, we contribute an artifact with the capabilities to:
• differentiate between different activities such as: standing,
walking, and running,

• identify different undergrounds such as grass, soft sand, and
asphalt,

• estimate weight.

2 PROTOTYPE
In this research, we present an artifact (Figure 1) and our develop-
ment process to build our device.

2.1 Chamber System Layout
The position of these chambers is important to measure meaningful
data at different areas of the foot. Matthies et al. [24] already showed
which areas might be of interest. We added to their figure 2 our
design (e), which shows the images of plantar pressure combined
with a heat map. In our design, the toe and metatarsal are building
one chamber and the heel the other chamber. The best positions
are the peak pressure points of the foot during movement. During
normal walking activity, the front and back foot touches the ground
at different times. First the heel absorbs the kinetic energy and then
the foot gets rolled to the front and the front gets pushed against
the floor to generate the forward movement.
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Figure 2: a-d) Areas of interest determined by Matthies at al.
[24] and Shu et al. [27]. e) Displaying our design.

2.2 Material of the chambers
A normal 3D-Printer is able to print a wide range of Filament[28].
The chambers need to be airtight and flexible, to build up sufficient
pressure and change the chamber properties. Some papers[10, 13,
21, 31] printed an insole by using Ninjaflex fromNinjatek. This TPU
is soft and tough. In 2021 this company released a new filament,
called Chinchilla. Chinchilla is much softer. However, various tests
of this material showed that it was not tough enough for air pressure
or the resistance needed for human body weight. Other materials
investigated, such as hard TPU were too brittle, the use of Ninjaflex
seems most appropriate. Ninjaflex was used for the chambers, while
Chinchilla was used for the frame and insole.

2.3 Sensors & Electronics
For the proposed approach, the air pressure of the chambers needs
to be measured. The absolute sensors will compare the pressure
in the chamber with a fixed pressure of the sensor. Additionally,
an IMU will be integrated to measure movement and rotation. For
fast prototyping we selected Arduino as a cost-effective platform

[1]. The prototype in this paper uses an ESP32, because of its com-
pactness, compute power, connectivity, and robustness. Figure 1(b)
shows all the components and the PCB. One of the pressure sen-
sors is under the PCB, the object with blue tape is a valve and the
blue-chip on the left side of the PCB is the IMU. On the PCB are
nine mosfet stages and the power supply and the ESP32.

2.4 Technical Insights
PressureChamberMaterial: FusedDepositionModeling (FDM)

3D printing does not inherently produce airtight pressure cham-
bers without post-processing. Such post-processing may involve
smoothing and sealing the surface by melting it, or applying a
coating of another material, such as rubber paint. The 3D printer’s
built-in capability to ’iron’ a print was found to be insufficient.

Microcontroller: The ESP32 is a well-designed microprocessor
making it perfect for an IoT device. Even in deep sleep, the ESP can
take measurements, saving them to an SD Card or flash storage.
In normal operation mode, uploading the data if a connection is
present is possible. Using the FreeRTOS is strongly recommended,
because of the real-time features incorporated. This includes precise
timing functions and the scheduler. System Queues can be used to
guarantee consistency in data of independent program tasks.

Ripple Reduction: The electric noise from inductive loads
on the power line of the microcontroller can be reduced with a
MOSFET-Stage, consisting of diodes, resistors and capacitors, pre-
supposed the actuator has only one direction.

3 EVALUATION
We conducted three pilot studies aiming to answer the following
research questions: "RQPilot1: How can we detect different activities
relying on air pressure data?", "RQPilot2: How can we detect different
terrains using both, air pressure sensors and the IMU?" and "RQPilot3:
How well can we estimate the user’s weight using the air pressure
sensors only?"

3.1 Pilot Study 1: Activity Recognition
3.1.1 Hypotheses. To answer our research question, we establish
the following hypothesis:
H1: As the prototype is able to sense pressure, we will be enabled

to detect different ambulation activities, such as walking,
running and standing.

3.1.2 Apparatus. The device as proposed is used. Particularly, the
pneumatic pressure sensors are used in this study. The prototype’s
IMU and vibration capability are not used in this study. The web
interface running on the ESP32 is used to visualize and stream the
data to a client.

3.1.3 Procedure and Task. We invited the participant and asked for
oral consent. Then, the participant was made to wear the prototype.
The participants were videotaped, to check the performance in a
post-processing manner. For this, the data was synced by the study
leader. Each participant was instructed to walk a distance of 20
meters in one direction, turn around, and then run back along the
same 20-meter stretch. This sequence was performed three times,
with a brief pause of 5 seconds between each round.
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3.1.4 Participants. In this pilot study, we invited three participants.
• Gender: Female, Age: 21 yrs, Weight: 82 kg, Height: 163 cm,
Shoe size: 39EU

• Gender: Male, Age: 27 yrs, Weight: 76 kg, Height: 178 cm,
Shoe size: 42EU

• Gender: Female Age: 43 yrs, Weight: 90 kg, Height: 170 cm,
Shoe size: 40EU

3.1.5 Data Gathering. This study primarily utilized quantitative
data derived from pressure sensor measurements at the front and
rear sections of the smart insole. To facilitate temporal pressure
variation analysis, a synthetic value was incorporated, computed
as (baseline = baseline0.999 + sensorValueH0.001// 1000Hz). Ad-
ditionally, data from six axes of the IMU were recorded. All these
measurements, together with a timestamp, were captured at a fre-
quency of 100 Hz. The entire test was filmed with a 60 Hz camera.
We performed an additional post-processing on the data before ex-
tracting synthetic features representing abrupt pressure variations.
Specifically, instances where the sensor reading in the rear chamber
(sensorValueH) exceeded the baseline by 50mv were flagged. When
the pressure fell below the baseline by 50mv, the corresponding
time difference was computed and stored.All measurements were
manually labeled as standing, walking, or running with the aid
of the video footage. The final set of measurements included ap-
proximately 180 meters of walking, 162 meters of running, and 60
seconds of standing. The duration of the running phase was shorter
due to the inclusion of a one-meter start time and a one-meter
distance to decelerate.

3.1.6 Results and Discussion. The aim of this study was to de-
velop a real-time classification system to run on the microcontroller.
’Weka’[16] found the time difference between pressure increase
and decrease to be the most significant feature and generated a J48
decision tree, a variant of the C4.5, with a theoretical performance
of 99% accuracy. A substantial advantage of the decision tree is the
straightforward implementation in C-Code:
if (millis() - lastStepStart > 2101) {

classification = "standing";
} else if (millis() - lastStepStart > 1028) {

classification = "walking";
} else {

classification = "running";
}

3.2 Pilot Study 2: Terrain Detection
3.2.1 Hypotheses. Based on previous findings shown in CapSoles
[24], two hypotheses are established:
H2: It can be assumed that a smart sensor shoe can differentiate

between hard and soft undergrounds.
H3: The consistency of measured IMU values on hard under-

grounds is higher than on soft undergrounds.

3.2.2 Apparatus. We predominantly utilized data from the Inertial
Measurement Unit (IMU) sensor. Like the previous prototype, these
data were captured at 10 ms intervals and were then streamed
into a cloud-based InfluxDB database. We chose not to employ the
vibration and valve system in this particular study. Our prototype

differs from the one presented in CapSoles [24] in several ways.
While the CapSoles prototype incorporates capacitive sensors, it
lacks an IMU. Furthermore, our prototype boasts a higher sampling
rate of 100 Hz, compared to the 30 Hz sampling rate of CapSoles.
3.2.3 Procedure and Task. The evaluation procedure starts with
explaining the task. We gathered consent from the participants and
collected their biometric data. Right after, the participants were
asked to put on the prototype and to take a few steps, getting a feel
for the shoes and the wear. On our end, these steps are also used to
check the prototype’s functionality. The participant then started
the task. The participants were asked to walk on a randomized
order of terrains for 20 meters, then turn around in the middle of
the track and repeat this 3 times. The measured terrains range from
soft to hard, sand, grass and asphalt.
3.2.4 Participants and Data Gathering. We used the same partici-
pants from study 1 (see subsection 3.3).

This study is grounded on the data from the air pressure sensors.
Additionally, we utilize data from an accelerometer and a gyroscope
in three dimensions, thus enabling us to measure foot movement.
We collected data from three different surfaces, with each session
lasting 35 seconds. This resulted in a total of 315 seconds of data,
which, at a recording frequency of 100 Hz and eight measured
values per cycle, equates to a dataset of 252,000 individual values.
3.2.5 Results and Discussions. The phase during which the foot
maintains ground contact was identified as the most informative.
We observed varying degrees of foot stability across different ter-
rains. Ground contact is defined as a 50mv increase in pressure in
any of the chambers, a determination method consistent with our
previous study. Only measurements obtained during these ground
contact phases will be subject to analysis.

The raw data of a single step can be seen in figure 3. The first
graph shows the standing phase on asphalt. The measured values
on asphalt appear nearly stable. The second graph shows grass, the
sensor values shoe to be less stable compared to asphalt. The final
terrain, sand, yielded "shaky" or unstable measurements. A sim-
ple threshold classifier, based on a C4.5 decision tree, was applied
to the signal ripple (the sum of changes from one sensor reading
to the next, normalized to the same value range and number of
samples) across all six IMU values. This approach was capable of
differentiating the samples with an accuracy of 100%, provided that
the samples were preprocessed. Typically, the first and last two
steps are discarded due to their incomplete nature. Therefore, hy-
potheses H2 can be accepted, since the ripple is noticeably higher.
Hypothesis H3 can be accepted as well, as the ripple on the soft
underground is much more inconsistent than on hard asphalt. Al-
though we have a small sample size, we postulate that the system
can differentiate between diverse undergrounds by the stance time.
On soft undergrounds, the stance times are longer (sand: 800ms,
grass: 730ms) than on hard surfaces (asphalt: 670ms).

3.3 Pilot Study 3: Weight Estimation
3.3.1 Hypotheses. Previous studies have shown that a weight es-
timation with smart insoles is somewhat possible. Hellstrom et al.
[17] utilize a Force Sensitive Resistor (FSR) ESS310 plus a FlexiForce
adapter 1120 with a wearable insole to showcase a weight estima-
tion. In a broader study, Kim et al. demonstrate a weight estimation
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Figure 3: Sensor values of the three surfaces, top: Asphalt, middle: Grass, bottom: Sand. pH: Pressure Heel, pV: Pressure Ball, pB:
pressure Baseline, ax: accelerometer X, gz: Gyroscope X, ay: accelerometer Y, gy, gyroscope Y, gx: gyroscope X, az: accelerom. Z

with a broad dataset by 72 different users using a MobileNetV2 Neu-
ronal Network [20]. Although FSR show a substantial sensor drift,
D’Arco et al. [8] neural network approach for weight estimation.
Therefore, we establish two hypotheses are established:
H4: The air pressure sensors embedded inside the insole will be

the optimal sensor to capture the physical information to
further analyze and predict weight.

H5: A neuronal networkmay be themost useful and efficient way
of finding the hidden pattern of the relationship between air
pressure from the insole and the weight.

3.3.2 Procedure and Task. Each participant was asked to step on a
weight measure to gather ground truth data of the user’s current
weight. As next, the participant was asked to step with their left
foot onto the left insole, while keeping the right foot in the air. This
task was repeated five times for each test subject.
3.3.3 Participants. In this experiment, more than 37 different peo-
ple were invited to participate in the data collection. They are
between 18 and 40 years old and come from Europe, India and
China. The foot size was between 37 and 45 EU.
3.3.4 Apparatus and Data Gathering. The insole prototype was
sampled with 100 Hz. The ground truth was collected by a commer-
cial weight measure. At this time, the shoe size was also measured,
since we suspect the shoe size to influence the distribution of the
weight to the pressure chambers. Two pressure points (pV - front
chamber sensor / pH - rear chamber sensor) were collected over
five seconds per trial (see Figure 4). The data gathering was similar
to the previous studies. We ended up with 185 data points and 37
data sets.
3.3.5 Results and Discussions. We selected a machine learning
approach and therefore split our collected data into two groups
(80% training and 20% test set). We tested several window sizes,
including 100% (6000ms) down to 13% (800ms). We ran trained

a neuronal network for regression with spectral features of the
raw data. The neural network has an input layer with 3 features
and 2 dense layers with 10 neurons each and an output layer. We
experimented with different numbers of training cycles (epochs).
We used a loss function as a criterion to find the optimal epoch value
to minimize the prediction error. We found that the loss function
decreased from 195.06 to 85.07 as the epoch value increases from
100 to 1000. After all the parameters are set to be optimal, which is,
setting the spectral Analysis as processing block, setting window
size as 6000ms - a single window approach and 800 as training cycles
and 0.05 as learning rate, the final model of accuracy is 70.97% with
the mean squared error of 85.08 and loss as 155.21.

In this research, we discovered that the use of smart insoles for
weight estimation is feasible. However, the weight test accuracy for
testers in this experiment was approximately ~70%, leading us to
reject hypotheses H4 and H5.We propose using pneumatic pressure
sensors for this application since this technology does not exhibit
the typical sensor drift seen in Force-Sensitive Resistors (FSRs).
According to the datasheet of the pressure sensor, the Long-Term
Stability over 1 year is approximately 0.5% [4]. In future studies, it
would be compelling to explore whether the user’s weight could
also be reliably estimated during motion, such as walking. For
the scope of this study, a linear regression may be a more fitting
approach for standing, and a load cell might be preferable. However,
for running, the approach presented in this study could be suitable.

4 CONCLUSION
In this paper, we demonstrated a pneumatic smart insole. We con-
ducted three studies answering three research questions that we
can conclude with a positive result as follows: RQ 1) A precise activ-
ity recognition of ambulation activity is possible by relying on air
pressure data only. It is even possible to reconstruct the gait cycle
with two pressure chambers only. RQ 2) Terrain identification is
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Figure 4: Raw data of P14 (78.55 kg) showing pV, pH over time. In our experimental setup, the participant stepped on the insole
five times (four times depicted here). The raw data makes it obvious that a machine learning approach seems necessary.

possible using IMU data. Different terrain shows alternating speed
in gait. With softer terrain, the stance time showed to increase. The
stance time was increased on grass over asphalt and even more
increased on soft sand. RQ 3) Finally, we were able to estimate the
user’s weight using a pressure chamber system. These findings may
yet not be generalize, but confirm internal validity.
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