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ABSTRACT 

Since the human body is a living organism, it emits various 

life signs which can be traced with an action potential 

sensitive electromyography, but also with motion sensitive 

sensors such as typical inertial sensors. In this paper, we 

present a possibility to recognize the heart rate (HR), 

respiration rate (RR), and the muscular microvibrations 

(MV) by an accelerometer worn on the wrist. We compare 

our seismocardiography (SCG) / ballistocardiography 

(BCG) approach to commonly used measuring methods. In 

conclusion, our study confirmed that SCG/BCD with a 

wrist-worn accelerometer also provides accurate vital 

parameters. While the recognized RR deviated slightly from 

the ground truth (SD=16.61%), the detection of HR is non-

significantly different (SD=1.63%) to the gold standard. 
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INTRODUCTION 

The human body is constantly emitting vital signs, which 

reflect the current mental and physical state of a person. 

These vital parameters such as respiration rate, heart rate, or 

microvibrations of muscles contain crucial information that 

allow to draw conclusions on one’s body processes and 

states, such as stress level, arousal state, the quality of 

sleep, well-being and anomalous situations. Such emitted 

vital signs are controlled by the autonomic nervous system 

and therefore can only be influenced indirectly by the 

human itself. In this paper, we utilize a simple motion 

 

Figure 1. Sensing respiration and heart rate in the state of 

rest. This setup includes 6 sensors: microphone (head), 

Medisana blood pressure monitor (left wrist), PPG of LG G 

Watch Round (left wrist), accelerometer of Shimmer3 IMU 

(right wrist) and the Pulox pulse-oximeter (right index finger). 

sensor for detecting the aforementioned vital signs (HR, 

RR, MV) at the user’s wrist while being in rest and while 

only making use of a single accelerometer, which is 

denoted as seismocardiography (SCG) / 

ballistocardiography (BCG). When only using a single 

inertial sensor, we do not face the problem of a high power 

consuming and complex sensor setup, which is usually the 

case for commonly used technologies, such as 

photoplethysmography (PPG) or electrocardiography 

(ECG). We envision our method to be applied at 

smartwatches in order to track the user’s vital parameters in 

a state of rest, such as when lying on a sofa, which is 

required for the algorithm to provide precise data.  

In this paper, we contribute the following: 

 An energy efficient, unobtrusive method and 

straightforward design of measuring vital parameters 

based on SCG / BCG at the user’s wrist. 

 An algorithm that is capable of measuring three vital 

parameters: heart rate (HR), respiration rate (RR), and 

microvibrations (MV) by merely using a simple 

accelerometer. 

 A comparative study that proves our design to provide 

valid vital parameters. We evaluated that our heart rate 

recognition algorithm is as reliable as the current gold 

standard (SD=1.63%) and the respiration rate only 

slightly differs to the ground truth (SD=16.61%). 
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RELATED WORK 

Wearable devices are widely used in the area of activity 

recognition. The use-cases include medical or rehabilitation 

scenarios as well as general sports or health topics. In this 

section, we provide an overview of related research and 

technologies in the given context. 

Heart Rate Detection 

The most common wearable devices make use of optical 

sensors in order to detect the heart rate and the saturation of 

peripheral oxygen. Thereby, the pulse-oximetry sensor is 

either implemented into a finger-clip [13,14,15,18], or into 

a wrist-worn device, such as a watch. Anliker et al. [1] 

presents AMON, a wrist-worn device capable of measuring 

heart rate, blood pressure, ECG-activity, peripheral oxygen 

saturation, temperature, and physical activity. The authors 

measure the heart rate by utilizing a pulse-oximeter at the 

back of the wrist-worn sensor device. Other related works 

make use of the electrocardiography (ECG) and calculate 

the heart rate based on the ECG signals [10,11]. In these 

publications, the authors attach smart shirts with ECG 

electrodes. In contrast, Garverick et al. [8] use a 

continuous-wave Doppler ultrasound device for measuring 

the heart rate of a fetus. Apart from measuring heart activity 

in a myographic or optical way, we can also determine 

heart activity based on small body movements caused by 

the contraction of the heart. This method is known as 

ballistocardiography (BCG) or seismocardiography (SCG) 

[2,19]. Thereby, sensors such as accelerometers or pressure 

sensors are applied to the human body to measure the 

exiguous movements induced by heartbeats. For that 

reason, the sensors are usually being placed nearby the 

heart (e.g. sternum or clavicle). Bieber et al. [5] recently 

utilized an accelerometer in a smartwatch – which had to be 

placed on the chest - to measure the user’s heart rate. 

Respiration Rate Detection 

There are several ways to detect the respiration rate in a 

wearable setup. The most common and simple setup 

consists of strain gauges, which are worn as a belt around 

the torso [12]. Another approach is to make use of 

accelerometers, which are placed directly on the chest or 

torso [7,16]. Mundt et al. [13] utilize the impedance 

plethysmography, which measures the change in tissue 

volume as a change in impedance on the body surface. 

Apart from the respiration rate, the authors provided the 

monitoring of heart rate, blood pressure, ECG-activity, and 

peripheral oxygen saturation [13]. Di Rienzo et al. [6] apply 

a textile-based transducer for measuring the respiratory 

movements as changes in thorax volume. Kundu et al. [9] 

apply a capacitor to a shirt and measure the respiration rate 

by analyzing the changes in permittivity as a result of tissue 

movement between the electrodes. Bello et al. [3] also use 

capacitive sensing to detect the expansion of the thorax. 

The authors use a shirt with three capacitive sensors, which 

detect changes in capacitance after a textile expansion that 

leads to an increase in electrode distance. Other works 

make use of microphones or nasal airflow sensors [4]. 

Microvibrations / Muscle Tonus Detection 

The most common wearable systems for detecting muscle 

activity are based on accelerometry. Thereby, the use cases 

are very widespread and contain topics such as sleep 

detection, the detection of pathological tremor, the 

detection of epileptic seizures, or general activity 

recognition. In 1962, Hubert Rohracher [17] initially 

investigated the occurrence of low amplitude muscle 

vibrations that he referred to as microvibrations. In this 

work, Rohracher used piezoelectric phono player pickups to 

measure the continuously detectable vibration of the muscle 

tissue. He also mentioned processes that are connected to 

and influenced by the muscle vibration, respectively 

(medication, level of stress, temperature etc.). In contrast to 

microvibrations, which are also measureable in sleep or 

states of unconsciousness, most research is conducted in the 

area of pathological tremors, which tend to disappear in 

these situations [17]. 

VITAL SIGN EXTRACTION WITH ACCELEROMETERS 

The algorithm proposed in this paper works in three 

filtering stages, which provide the extraction of heart rate, 

respiration rate as well as microvibration from a single 

acceleration signal. As a peculiarity of the accelerometer, 

the measured motion is split into three axes, containing the 

valuable information. To cope with the dimensionality, a 

combination of all three axes in a single signal was enabled 

via building the magnitude of the acceleration vectors (1).  

 |𝑎⃗|  =  √𝑎𝑥² + 𝑎𝑦
2 + 𝑎𝑧²   (1) 

 𝑣[𝑖] ∶= 𝑣[𝑖 − 1] + 𝛼 ∙ (𝑤[𝑖] − 𝑣[𝑖 − 1]) (2) 

 𝑣[𝑖] ≔  𝛼 ∙ (𝑣[𝑖 − 1] + 𝑤[𝑖] − 𝑤[𝑖 − 1]) (3) 

 𝑣[𝑖] ≔ 𝑣[𝑖]²    (4) 

Now, the resulting combined raw signal includes all 

oscillations and is further processed in the subsequent steps. 

Figure 2 shows the three stages of signal recognition in the 

time domain and frequency domain. In the first stage, the 

raw signal is low-passed (2) to capture the breathing 

frequency. Hereinafter, the raw signal is high-pass filtered 

(3) to capture the high frequent microvibrations. In the last 

step, the high-passed signal is further processed by applying 

a squaring algorithm (4) to reduce noise and capture the 

heart rate. Since the filters were applied to a time-discrete 

signal, v describes the input value at the time i. The value w 

describes the current mean value at the time i, while 𝜶 is a 

weighting coefficient. By performing a FFT (Fast Fourier 

Transform) after each filtering step, the resulting 

frequencies can be extracted. Note: to ensure an accurate 

measurement, a resting state such as sleeping or a low 

amplitude activity (e.g. watching TV, sitting resting) is 

required.    



 

Figure 2. Filtering process for detecting respiration, microvibration, and heart rate. The blue color shows the combined raw signal 

in time domain (left side) and frequency domain (right side). When applying a high pass filter, we can easily recognize the 

microvibrations in the frequency domain (red color). Reducing the noise and squaring the signal makes the heart rate visible 

(orange color).

EVALUATION 

To evaluate our sensing approach, we conducted a study 

with 15 participants and compared our measured vital 

parameters with state of the art sensing devices. This way, a 

comparison of the heart rate as well as respiration rate 

values between all devices is enabled. By applying a 

statistical significance test, we determined the actual 

difference in comparison to the other tested devices.  

Study design 

To evaluate the different approaches and devices, we 

designed a study that compared our presented approach to 

state of the art hardware in the area of heart rate and 

respiration rate detection. We recorded data of 15 subjects 

(14 male, 1 female) aged 22 to 50 years (M=31.4 years). All 

subjects where in their optimal BMI and therefore had no 

problems with obesity. To capture the vital parameters, the 

subjects had to wear a pulse-oximeter at the index finger of 

the right arm, as well as the Shimmer3 IMU to log the 

occurring accelerations induced by blood flow and 

respiratory movements. Furthermore, a blood pressure 

monitor (Medisana BW 300 connect) was worn at the left 

arm, as well as a LG Watch R that captured the heart rate 

via an internal photoplethysmography (PPG) sensor. A 

chest worn belt recorded respiratory movements with a 

capacitive electrode, which is sensitive to deformation due 

to respiratory movements. At the head position, a 

microphone was placed to record respiratory noise. The 

devices where applied by a technician to ensure a correct 

individual fixation. While recording the data, the subjects 

were lying on a blanket on the ground and were instructed 

to lie as calm as possible.  

Gathered Signals 

Figure 3 shows the different signals provided by the tested 

devices. Each signal shows a window with the length of 30 

seconds. The signals shown were extracted by the data set 

of subject P09. All signals are aligned in time. The pulse-

oximeter signal (Pulox) shows a clean heart rate signal as 

well as the respiration influence as a change in amplitude 

on the aforementioned. The chestband shows a clean 

respiration signal with a small drift due to environmental 

and electrode displacement effects. The respiration signal 

provided by the head worn microphone shows a small 

change in amplitude for inspiration cycles and increased 

amplitudes for the following expiration cycles. The last 

signal was provided by the Shimmer3 IMU, which 

incorporates the heart rate and respiration rate. Besides this, 

we can perceive an additional signal which is accumulating 

movements in the higher frequency range (microvibrations) 

and some white noise.  



 

Figure 3. The different signals provided by the tested devices. 

Heart rate 

To compare the quality of the heart rate measurement, the 

Shimmer3 IMU, Medisana BW 300 connect blood pressure 

monitor, and LG Watch results were compared to the Pulox 

pulse-oximeter sensing device, which is referred to as the 

gold standard. Table 1 shows the results in comparison. 

Table 1. Comparison of heart rate results of all three tested 

devices and the gold standard (Pulox).  

  Pulox Shimmer3 Medisana LG Watch 

  Gold St. HR Dev. HR Dev. HR Dev. 

P01 70 69 1,43% 69 1,43% 73 4,29% 

P02 67 67 0,00% 66 1,49% 66 1,49% 

P03 66 67 1,52% 65 1,52% 69 4,55% 

P04 68 69 1,47% 70 2,94% 67 1,47% 

P05 64 62 3,13% 62 3,13% 62 3,13% 

P06 71 70 1,41% 70 1,41% 77 8,45% 

P07 67 67 0,00% 72 7,46% 73 8,96% 

P08 68 67 1,47% 69 1,47% 66 2,94% 

P09 73 72 1,37% 72 1,37% 79 8,22% 

P10 63 60 4,76% 61 3,17% 59 6,35% 

P11 70 70 0,00% 72 2,86% 68 2,86% 

P12 81 82 1,23% 80 1,23% 78 3,70% 

P13 82 78 4,88% 79 3,66% 78 4,88% 

P14 58 57 1,72% 57 1,72% 70 20,69% 

P15 56 56 0,00% 56 0,00% 57 1,79% 

  
1,63% 2,32% 5,58% 

Comparing all four devices (Pulox, Shimmer3, Medisana, 

and the LG watch) yielded significant differences by a one-

way ANOVA (F3,42=11.99; p<.0001). A Tukey HSD Test 

determines that the Shimmer3 (M=1.63%; SD=1.55%) and 

the Medisana (M=2.32%; SD=1.72%) does not show any 

statistically significant differences towards the Pulox, 

which is the gold standard. There are no differences 

between the Shimmer3 and Medisana. The test confirms 

that the Shimmer3 and the Medisana are both capable of 

determining the correct heart rate. Furthermore, the Tukey 

HSD Test found the LG watch (M=5.58%; SD=4.86%; 

p<.01) to perform significantly worse than all the other 

devices. Even though the LG watch cannot compete to the 

gold standard, it still provides “good-enough” results. 

Respiration Rate 

For determining the respiration, the capacitive chestband, 

Shimmer3 IMU, and Pulox pulse-oximeter where compared 

to the results measured by the head worn microphone. As 

expected, the pulse-oximeter could also be used for 

determining the respiration rate due to respiratory 

influences (change in amplitude) on the captured heart rate 

signal. Table 2 shows the results of the comparison. 

Table 2. Comparison of the respiration rate results of all 

tested devices and the microphone as the gold standard. 

  Micro. Chestband Shimmer3 Pulox 

  Gold St. RR Dev. RR Dev. RR Dev. 

P01 13 13 0,00% 13 1,41% 12 7,69% 

P02 11 11 0,00% 10 9,09% 10 9,09% 

P03 13 13 0,00% 13 1,41% 10 23,08% 

P04 14 14 0,00% 15 7,14% 13 7,14% 

P05 10 10 0,00% 10 2,54% 11 10,00% 

P06 14 14 0,00% 13 5,83% 13 7,14% 

P07 16 16 0,00% 19 18,75% 16 0,00% 

P08 16 16 0,00% 23 43,75% 12 25,00% 

P09 13 13 0,00% 16 23,08% 13 0,00% 

P10 15 15 0,00% 15 2,34% 12 20,00% 

P11 15 15 0,00% 16 7,42% 15 0,00% 

P12 13 13 0,00% 16 23,08% 17 30,77% 

P13 15 15 0,00% 16 7,42% 15 0,00% 

P14 9 9 0,00% 12 33,33% 11 22,22% 

P15 8 8 0,00% 13 62,50% 10 25,00% 

  
0,00% 16,61% 12,48% 

 

The data analysis of the respiration rate from all devices 

(microphone, chestband, Shimmer3, and the Pulox) 

provided statistically significant differences by a one-way 

ANOVA (F3,42=11.67; p<.0001). While the chestband 

provided exactly the same results as the microphone, the 

Shimmer3 (M=16.6%; SD=17.94%; p<.01) and the Pulox 

(M=12.47%; SD=10.8%; p<.01) performed significantly 
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worse than the gold standard and the chestband, following 

the results of a Tukey HSD Test. Significant differences 

between the Shimmer3 and the Pulox could not be 

determined. In conclusion, we can see that the Shimmer3 

and the Pulox are both capable of sensing the respiration 

rate, but suffer of a slight inaccuracy. 

CONCLUSION 

In this paper we show that wrist-worn devices are capable 

of detecting vital signs such as heart rate, respiration rate 

and microvibration. The study results indicate that by using 

standard consumer products, such as smartwatches, human 

vital signs can be captured by reading accelerometer data 

and applying our algorithms to it. This way, vital 

parameters can be logged in any resting states or periods of 

low amplitude movements via devices that are using built-

in accelerometers. Now, this enables all smart devices (with 

a built-in accelerometer) to capture vital parameters that 

were not detectable before because of a missing 

photoplethysmography (PPG) sensor. Moreover, making 

use of an accelerometer instead of a PPG lowers energy 

consumption drastically. (Typical power consumptions: 

PPG, 1 – 50mW; Acc., 0.5 – 2mW). Even though the 

detected respiration has slight inaccuracies, the heart rate 

recognition could be proven to match the state-of-the-art 

standards, as it is even more accurate than the PPG. Several 

post-studies indicate that elastic underground surfaces (e.g. 

a mattress) can even raise the accuracy level, since such 

surfaces act as a resonator. As an effect, this increases the 

recognition of respiratory movements up to a flawless 

detection. 

FUTURE WORK 

By applying further algorithms, additional vital parameters 

such as heart rate variability or respiration rate variability 

could be determined. This could provide more complex 

insights into the topic of stress detection. Furthermore, the 

detection and monitoring of microvibrations and vital signs 

such as heart rate variability etc. could possibly contribute 

to a more detailed sleep analysis.  
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