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Abstract. Rescue robots can play an important role in disaster situa-
tions, such as locating people for evacuations. This paper demonstrates
how to transform an affordable consumer robot, such as the Loomo Seg-
way, into an intelligent rescue robot. Our proof-of-concept shows how
LoomoRescue can autonomously browse offices to locate people and how
to detect their vital signs through posture and heart rate detection in
real-time. Our indoor localization is a SLAM approach based on an exter-
nal UWB position system plus a movement correction with an ultrasound
sensor in combination with an IMU. The accuracy of linear movement
showed minor deviation with an average error of 1.65%, while the angular
movement showed an error of 2.43%. We classify three types of critical
postures with an average detection rate of 78.33% within a distance of
1 – 20 meters. Our optical heart rate detection is 87.3% accurate to the
ground truth. We envision that such an affordable robot can be used for
evacuation purposes as it may be part of the standard inventory in the
future.

Keywords: Rescue Robot · Computer Vision · Optical Vital Sign De-
tection · Posture Recognition · SLAM · Autonomous Navigation.

1 Introduction

Throughout the past decade, the use of rescue robots in disaster scenarios has
been increasing [1]. These robots especially provide a benefit in scenarios that
pose a threat to humans. Rescue robots play an important role in searching
and locating trapped survivors. Different form factors have been developed for
these purposes, such as robot dogs, drones, and other wheeled robots [2]. These
devices can be crucial in searching for victims or merely supporting us with
understanding conditions in inaccessible areas.

The current state-of-the-art in rescue and assistive robots demonstrate that
significant research exists concerning assistance robots. However, particularly
rescue robots are usually expensive and demand high robustness, speed, versatil-
ity, and ease of use for the piloting human in accordance to an extensive review
by Delmerico et al. [1]. Ways to enable an affordable and consumer-available
robot that already matches many of these requirements becoming a rescue robot
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In disaster situations....
...When Evacuation is necessary

Loomorescue 
... can autonomously scan floors and locate vicTims

... send help or 

communicate with them
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Fig. 1. LoomoRescue can be useful for disaster situations, such as when evacuation
is necessary.The robot is fully autonomous and can systematically navigate through a
floor, looking for possible victims. Further, LoomoRescue is able to understand whether
the person may be in a critical condition by detecting vital signs through posture
and heart rate. Finally, LoomoRescue can communicate with the victim or send a
notification to a rescue team.

that acts autonomously to identify victims’ health status in real time remains an
unanswered question. We envision low-cost rescue robots to be a part of public
facilities to enable support in disaster situations, such as building evacuations.

To demonstrate this, we developed a rescue robot based on an affordable
consumer robot, the Loomo Segway3. We posed two research questions. Firstly,
how can we enable an autonomous navigation? Secondly, we sought to investigate
whether it was possible for Loomo to understand a human’s critical activity?

We developed a proof-of-concept that transforms an affordable consumer
robot into a rescue robot by enabling:

– Simultaneous Localization and Mapping (SLAM) [3] and path planning using
a multi-sensor fusion approach incorporating an IMU, Ultrasonic sensors,
and an additionally equipped Ultra Wide Band (UWB) based multi anchor
localization system [4],

– Optical vital sign detection using a posture recognition approach by using
Google’s ML kit [5], as well as a heart rate detection by using an Eulerian
Video Magnification (EVM) approach [6] to magnify subtle changes in skin
colour.

Our main contribution is to integrate these different techniques into an affordable
consumer robot that demonstrates that it can be converted into a rescue robot.
According to Wobbrock this concerns an artifact contribution [7].

2 Related Work

There is a great body of related work, as this project intersects multiple areas.
We selected some exemplary projects from the field of search-and-rescue robotics
and human activity recognition that somewhat represent the state-of-the-art.

3 https://www.segway.com/loomo/
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2.1 Search-and-Rescue Robots

Over the past few decades, several kinds of rescue robots have been developed.
Though, research on rescue robots mainly focuses on localization and control
systems. In 2019, Delmerico et al. [1] conducted an extensive review on the
current state and future outlook of rescue robotics. Delmerico et al. categorized
rescue robots into Ground Robots (e.g., Legged robots [8], Tracked and wheeled
robots [9]), Aerial Robots (e.g., Drones [10, 11], Swarms [12]), and Marine and
Amphibious Robots (e.g., Snake-like Design [13]). In the following, we will discuss
some related work in more detail.

Kiyani et al. [14] developed a prototype of a search-and-rescue robot that
has the ability to locate itself in a known environment and to locate victims and
transport them to safe zones. This is at least a proof-of-concept of an Arduino-
driven mini-robot in a lab environment, but which is far away from reality.

A system that has been tested in an actual fire container house was proposed
by Young-Duk in 2009 [15]. Here, a fire rescue robot is remotely controlled
using Bluetooth and RF communication. Firefighters may deploy the robot in a
hazardous fire scene through a remote control guiding the robot for a possible
evacuation. The controlling firefighter receives information from the robot in
the form of image feedback and sensor data. Additionally, the firefighter can
communicate with the victims through the robot’s speaker, and thus, guide them
out of the scene. The robot relies on explicit control and is not autonomous.

Another search-and-rescue robot system for underground coal mine rescue is
proposed by Zhao et al. [16]. Here, the robot is remotely controlled using Wifi
and a fiber-optic cable and used to explore a coal mine shaft and to collect en-
vironmental information. The operating control unit incorporates an electronic
compass, a gyroscope, two wheel encoders, and four infrared sensors. The in-
frared sensors are used to measure the distance of the robot to the wall to
prevent unwanted crashes. The other sensors are used to deduce the motion tra-
jectory and form part of the positioning function. Further, the authors use the
image information from a camera to correct the position of the robot manually.
Still, the robot is mainly piloted by a human and not fully autonomous.

Another remotely guided control system for rescue robots is developed by
Mano et al. [17]. Depending on the tasks and working environment, it can switch
efficiently between remote control mode and auto-detect mode to take full ad-
vantage of the robot’s functions using a SLAM-based map building. Functioning-
wise this project comes closest to ours.

There are also researchers using the same type of robot used in this research,
the Segway Loomo. For instance, Gollasch et al. [18] extended the Segways soft-
ware API, and Steiner et al. [19] developed a ROS framework to improve Loomo’s
navigation for greater stability and speed.

To summarize this subsection, we would like to look at two comprehensive
overviews by Murphy et al. [20] and Delmerico et al. [1]. Both point to the need
for rescue robots, demanding that they be robust, fast, versatile and, above all,
highly user-friendly in use. Many rescue robots are prototypes, not consumer-
ready and of high expense. Furthermore, these robots are to be piloted by a



4 D.J.C. Matthies et al.

trained user. In our research, we aim to demonstrate how to convert a highly
developed consumer-ready robot, which is affordable and stable into a rescue
robot that can even work autonomously, not requiring trained pilots.

2.2 Human Activity Recognition

The research field of human activity recognition is broad and incorporates a
vast variety of approaches to detect the human’s activity [21], such as through
wearables [22], and other distance sensing techniques and technologies, such as
camera-based sensing [23]. As Loomo has a camera, which we utilize for sensing
posture and heart rate, we focus on these two aspects in the following subsections.

Posture Recognition Human posture detection is one of the important ap-
plication in human activity recognition. Often, machine learning approaches are
utilized to recognize the posture of the entire body via camera/image sensing.
Accurate recognition has shown to be a fundamental problem in computer vision
in recent years [24]. There is extensive literature on this topic, as evidenced by
the works of Bissacco et al. [25] and Dimitrijevic et al. [26].

Human posture detection and comprehensive analysis are required in different
applications, such as motion analysis, monitoring, human-robot interaction, and
medical rehabilitation. Anitha and Priya [27] build an automatic monitoring
system for the elderly by sending an alert when an unusual posture is detected.
Hernández [28] used posture detection in monitoring the exercises and providing
useful information for Robotic-Assisted rehabilitation therapies.

Cao et al. [29] present the first real-time multi-person system, named Open-
Pose, that collectively identifies key points of the human body, arms, face, and
feet (a total of 135 key points) in an individual’s image. The main functionalities
of 2D and 3D real-time multi-person keypoint detection, single-person tracking,
and calibration toolbox are used. Bazarevsky et al. [30] developed a lightweight
neural network to estimate human pose detection, which can also be used for
real-time mobile devices. Their development has been integrated into Google ML
Kit [5] and can be utilized by any mobile device via ML Kit’s API. The API’s
high reliability rendered it an optimal choice for our research.

Heart Rate Recognition Heart rate recognition is vital to understand the
user’s condition and thus is an objective in human activity recognition. Optical
recognition of heart beats is possible as blood circulation creates a periodic
change in the human body, although it is not perceivable to the eye. In 2011,
Poh [31] used this weak signal captured by an ordinary RGB-camera to design
a ”magic mirror”, which can reveal the user’s heart rate. The theory of Poh’s
magical mirror is to use the change of light when blood flows in the human
body [32]. The greater the amount of blood passing through the blood vessels,
the more light is absorbed by the blood, and the less light is reflected from
the surface of the human skin. Therefore, the heart rate can be estimated by
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time-frequency analysis of the images. This is the main idea also denoted as
Photoplethysmography (PPG).

However, this change of color in the skin is subtle and hard to capture by
most cameras. In this case, can have to ”magnify” these unobservable changes
in the image to a magnitude sufficient to be observed by the naked eye. In 2012,
Wu et al. [6] started from this perspective and proposed an algorithm called
Eulerian Video Magnification (EVM) to reveal temporal variations in difficult
or impossible videos to see with the naked eye.

Several works are developed based on this algorithm to detect heart rate
successfully. Bosi et al. [33] used this algorithm to estimate heart rate using
Microsoft device Kinect™ version 2.0. Similar to Gambi et al.’ work [34], which
also develop a heart rate detection on Kinect 2.0 camera, but further validated
this method and compared it to classical wearable systems. Chambino et al. [35]
developed an Android-based application for real-time monitoring of vital signs.
We adopted this implementation for our research.

3 LoomoRescue

3.1 Concept

Robots that assist humans is an age-old vision and still an ongoing trend in
human-robot interaction research. In this work, we would like to research whether
current state-of-the-art consumer technology, the Segway Robot Loomo, can be
utilized as a rescue robot. Therefore, our research is guided by two overarching
research questions:

RQ1: How can we enable Loomo to autonomously navigate through an environ-
ment?

RQ2: How can we enable Loomo to understand human’s critical activity?

3.2 Requirements

To answer our research questions, we set out certain requirements that Loomo
should be able to provide.

Requirement 1: To answer the first question on autonomous navigation, we
need to teach the rescue robot to understand its location in an environment. To
fulfil this requirement, the robot provides a number of embedded sensors that
can be utilized, such as the ultrasonic sensor, hall sensor, and inertia measure
unit. Combining these sensor will, in theory, enable the robot to navigate with-
out crashing and possible to organized a structure, such as a floor plan, once
the robot explores an indoor-environment. The feasibility of that has already
impressively demonstrated by Chen et al. [36]. In a hazardous scenario, there
may not be time for time-expensive exploration and thus, a floor plan might
already be provided to the rescue robot. In this case, the robot is required to
exactly locate itself in that floor plan.



6 D.J.C. Matthies et al.

Requirement 2: To answer the second research question, we need to enable
Loomo to find a person and understand the physical condition of a person.
There are several ways to incorporate such functions, such as by listening (mi-
crophone), or looking (camera) through an environment. To judge on whether a
person’s status is critical, the robot requires to have an understanding of typical
human activity and anomalies. Loomo may be required to understand whether
a person lies on the floor and whether the emitted vital signs, such as heart
rate, respiration, and micro-vibrations, are abnormal. This is required to work
instantaneously in real-time.

3.3 Design Decisions

To match the requirements, we need to make certain design decisions.
Decision 1: LoomoRescue needs to be effective and thus we decide to provide

the robot with a floor plan. The problem of any robot is that it cannot locate itself
in this environment without a positioning system. This results in robots not being
fully autonomous. To overcome this, we equip Loomo with an external UWB
position system, which consists of a tag carried by Loomo and tags distributed
all over the floor.

Decision 2: The posture of the human body is an obvious sign to understand
physical wellness. Therefore, we found it important to dynamically detect and
analyze the posture of the human body. This should be performed visually by
Loomo’s camera. Loomo should be able to classify dangerous postures, such
a person lying on the floor. Therefore, an advanced posture detection will be
implemented in this work. Further we decided to enable Loomo to detect heart
rate, which is an important vital sign.

3.4 Implementation

Loomo Device Loomo, firstly released in Novermber 2016 and also known
as the Segway Robot, is a combination of a self-balanced vehicle (SBV) and a
companion robot. Loomo is 640mm in height, weights 17.5 kg and has a battery
capacity of 310 Wh. In programming mode, the robot and can go up to 8 km/h,
otherwise it can go faster. Loomo uses an Intel quad core CPU with 2.4 Ghz,
and 4 GM RAM. The OS is based on Android that is programmable, movable,
and expandable by Segway Robotics – a Mobile Robot Platform Kit [37]. The
developer version enables to create a fully functional, stable, reliable, convenient,
and easy-to-use robot development platform.

The provided Software Development Kit (SDK) enables developers to con-
trol the base functions at an abstract level, which include: the control, initializa-
tion, and configuration of the Intel RealSense camera; Speech recognition includ-
ing pre-defined commands, base locomotion commands, the access to sensors, a
connectivity package to enable linking a mobile device, and an emoji library
that contains pre-defined ”human-like” sounds and eyes that will be drawn on
Loomo’s display. On top of that there is the possibility for a hardware extension
that allows mechanical and electrical engineers to design and attach additional
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components to the robot. Since Loomo is ran by an Android System, we can
also access a number of raw sensor data, such as the IMU, which is important
in this project.

Loomo’s Sensors Loomo provides a number of sensor, which are essential for
its functioning and for further development. These include: a RealSense RGB-
Depth camera (30 FPS), a HD camera (1080p, 104 degree wide-angle), a mi-
crophone array composed of five mics, a touch sensors on the head, ultrasound
sensor, hall sensors embedded in the wheels, two IMUs in the robot body and
head. For our implementation, we particularly processed the raw data of the
Ultrasound sensor and the IMU.

Ultrasound sensor: An ultrasonic sensor converts sonic signals into electrical
signals. Ultrasound is a sound wave with a frequency of more than 20 kHz,
which travels at 343 meters per second in air at 20 degrees Celsius. It is usually
designed to measure the distance between an object and the transreceiver that
emits ultrasonic waves at 40 kHz [38]. The principle is to measure the latency
between the emitted and received echo signal. This is also denoted as time of
flight (ToF), which enables us to calculated the exact distance [39].

Inertial Measurement Unit (IMU): The IMU is a compound sensor, which
usually consists of three linear accelerometers which measure acceleration, three
gyroscopes which measure angular velocity rate [40]. Such type of IMU is also
denoted as a 6-axis/DoF IMU. To encounter sensor drifts, a 9-axis/DoF includes
a three-axis geomagnetic sensor, which can be used to correct the angular velocity
sensor by the absolute pointing of the geomagnetic field to give accurate readings
[41].

Reference Localization System and Communication via the MQTT
Protocol To ensure reliable self-localization of Loomo, we resort to a multi-
anchor localization system based on Ultra Wide-Band signals (UWB), which
can be easily integrated in an office building. Such multi-anchor system is based
on the two-way ranging methodology (TWR) for distance estimation between a
given tag connected to the Loomo and each anchor node installed static in the
room geometry.

Anchor Tag
a) b)

Fig. 2. Position estimation of the reference localization system applying two-way rang-
ing and multilateration.
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By using TWR, the anchors do not need to be synchronized in time, which
decreases the amount of hardware interconnection between them. For each an-
chor separately, the transmission delay τtag between tag and anchor is estimated
as shown in figure 2 a). For establishing TWR between one anchor and the tag,
this anchor sends a Poll -message to the tag at time t0 to initialize the TWR.
The message includes an ID indicating the anchor unambiguously. The message
is received at the tag at time t1. After a certain processing time, the tag sends
at time t2 a Response-message to the anchor, which is received at time t3. After
processing this message, the Final -message is sent at time t4 including the stored
time stamps t0, t3 and t4 in the message’s payload. The tag received this message
at t5. The transmission delay, which is calculated at the tag’s microcontroller
results to:

τtag = (t3−t0)−(t2−t1)+(t5−t2)−(t4−t3)
4 = 2t3−t0−2t2+t1+t5−t4

4

Due to the constant transmission velocity, namely the speed of light with
c0 ≈ 3 ·108 m/s, the distance results as multiplication of delay τtag and c0. Since
only the distance to the tag is known, but not the direction, an distance radius
for each anchor node returns.

UE 1
Tag

UE 3
PC

UE 2
LoomoMQTT Broker

Subscribe Topics:
Loomo/referencePos

Loomo/control

Publish at Topic:
Loomo/Data

Publish at Topic:
Loomo/referencePos

Publish at Topic:
Loomo/control

Subscribe Topics:
Loomo/referencePos

Loomo/Data

Fig. 3. User Equipments (UE) communicating via MQTT protocol.

As shown in figure 2 b), a position where the object is most likely to be located
is obtained by multilateration, the iterative overlay of the different distance radii
in the tag’s microcontroller. Since the exact position of the anchor nodes is
known by the tag, the overall overall position of the tag is calculable. Overall,
the system results in an estimation accuracy of ±20 cm in the currently installed
state, which is why we use it without hesitation as a reference value for Loomo
similarly as shown by Leugner et al. [42]. Built-in sensors from Loomo can further
be used to increase accuracy.

To connect the Loomo with the tag’s position estimation, we establish a con-
nection including the Message Queuing Telemetry Transport protocol (MQTT).
The MQTT is from the field of IoT-applications and enables the wireless data
exchange of two or more User Equipments (UE) without initializing the com-
munication between the UEs itself.



LoomoRescue: An Affordable Rescue Robot for Evacuation Situations 9

The general structure of the MQTT is shown in figure 3. It consists of a
MQTT Broker in the center, which serves as a data hub. If a UE publishes data
to the broker, the data itself is stored at the broker with a corresponding topic,
consisting of a head topic and subtopics, which are ordered hierarchically. So,
the data is indicated unambiguously. If new data with a topic is published by
the same or another UE, the older data is deleted. So, no long term data storage
including storage management is needed. Every UE connected to the MQTT
broker is able to subscribe to specific head topics or subtopics. Then it receives
all data stored at the MQTT with the specific topic close directly after storage.
With MQTT connection of the tag, the Loomo and a remote PC, we are able to
integrate the UWB multi-anchor system as reference to the Loomo.

Program Start

Navigation 
Initialization

Are there waypoints 
remaining to reach?

Waiting for External 
Positioning System

Data received?

Calculate Path 
to next Waypoint

Moving

Get Ultrasound + IMU 
to calculate Position

Waypoint reached?

Movement 
Finished

no yes

no

yes

yes no

Fig. 4. Flow diagram depicting the decisions while moving through a floor.
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Feature Extension 1: Localization and Movement The localisation sys-
tem is key to guide the robot traverse the map, where the participation of sensors
plays an important role. For the localization, there is an ultrasound sensor, IMU,
and UWB, which was explained above. Given the 9-axis IMU may only have
accurate and stable angle data we need to find a way to fuse it with the ultra-
sonic sensor and the UWB positioning system, creating a correction method for
Loomo’s positioning. Previous works have showed how to impressively correct
GPS by adding an IMU [43] in real-time. Other works demonstrated position-
ing correction with acoustic sensing using the Doppler-Shift [44] and utilizing
acoustic sensing under device motion from a robot [45]. Another technology to
accomplish indoor navigation and localization is using radar, as nicely showcased
by Yue et al. [46].

Fig. 5. PID Block Diagram: The PID algorithm is to utilize the feedback of position
data to fix the input of Loomo’s motors. There are three elements for the feedback
calculation. The P element can simply multiply the error with a coefficient, which
gains a quick response value. The I element mean the integral errors in a time period,
so it enables fine-tuning of the robot over short distance. The element of D estimates
the trends of movement and thus can perform an adjustment of the speed.

3.4.4.1 Internal Localization and Move Control: The original control com-
mand in the Loomo SDK API provides ultrasound data, which are as accurate
as even reflecting wheel movement for instance. This inference of movement,
however, creates a large error when processing it in this form. Therefore, we also
utilize the IMU in combined to improve the PID algorithm for the movement
control (see figure 5). Both, the ultrasound sensor and the IMU have a quick
update rate of 50 milliseconds. This is a high response rate and thus suitably to
meet the demand of real-time movement control.

3.4.4.2 External Localization: It would be sufficient to control robot’s move-
ment though the method explained above. However, there is a problem: the
calculation of current position heavily depends on the former position. Since
sensors present drifts and inaccuracies, the errors will accumulate with time and
show too great deviation after a while. Thus an external positioning system is
introduced to improve the positioning accuracy and to correct the error. The
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UWB positioning system, as mentioned above, can be used as an additional
source of information that provides coordinates, while it supports full map navi-
gation functionality. In this setup we have two independent localization systems
working respectively. The external UWB system will guide the robot traverse the
floor through waypoints. However, entering a room, for instance, requires higher
accuracy than ±20 cm and therefore, we fall back on internal sensors to avoid
LoomoRescue bumping against the door frame. Figure 4 shows a flow chart on
how our navigation is designed.

Feature Extension 2: Human Activity Recognition To fulfil our require-
ments set out, we are required to develop an addition function for Loomo, so
it can understand the human activity. As discussed earlier, to identify a critical
vital state, we decided to include a detection of posture as well as a heart rate
detection. With these features, Loomo Robot would be enabled to estimate the
condition of the person.

Since Loomo is unable to touch the person, we decided to use a vision-based
approach. To not re-invent the wheel, we will rely on established machine learn-
ing libraries: OpenCV [47] and the ML Kit by Google’s to enable on-device
machine learning [5]. Both libraries offer android packages, which can be inte-
grated with Loomo. To get OpenCV properly running, we required to included
an additional Java Native Interface (JNI) that would execute C++ code.

Fig. 6. Showing three classified of the implemented posture detection. The skeleton is
colored in accordance to the criticalness, when the video feed is displayed at the Loomo
device.

3.4.5.1 Posture Detection: Google’s ML kit’s pose detector provides us with
up to 33 landmarks that are generation from an image at which a human is
identified. The implementation works in real-time once provided the video feed
from the HD camera. To classify postures, which is the main objective of our pose
detector, the relative placements of these landmarks are calculated in a plane
rule-based manner similarly as demonstrated in the PhD Thesis of Rithik Kapoor
[48]. This way, we categorized three critical stages of postures, as illustrated in
Figure 6:

– Normal: Representing a category of posture that is usually not considered
as dangerous, such as standing straight on the ground.

– Warning: Representing a category of posture which might mean this person
needs additional help in an emergency scenario. As ”warning” we classified
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someone that remains sitting in an emergency scenario such as an event of
a fire.

– Danger: Representing a category of posture that is usually considered as
dangerous. We classified any postures as ”danger” at which a person is some-
what lying on the ground, including any postures the person shows an awk-
ward horizontal posture.

3.4.5.2 Heart Rate Detection: Our heart rate detection contains three major
steps: A) Face detection, B) Eulerian Video Magnification (EVM) magnification,
and C) Photo-Plethysmography (PPG) signal processing.

Fig. 7. Heart rate detection on Loomo when toggled on the video feed.

In step A, we use the OpenCV library to detect the face as the Region
of Interest (ROI) from each video frame. We initialize a cascade classifier to
identify faces based on a pre-trained model (lbpcascade frontalface.xml) that
can be obtained through the official OpenCV website. The application basically
extracts a rectangle area that contains the ROI.

In step B, we look at these sub-frames, which will be processed by the EVM
algorithm. The EVM performs a spatial filter to decompose the frames by blur-
ring, differentiating, and down sampling the image with a Gaussian pyramid.
After obtaining the different spatial bands, a temporal filter is implemented on
each spatial band to select bands of interest by frequencies. In our case, we want
to amplify the heart rate signal and select fL = 0.4 to fH 4 Hz (24 to 240 bpm)
for bandpass filtering, which is approximately the range of human heart rate.
This seems to be the appropriate cutoff frequencies as shown in related work
[6]. Finally, we amplify the change in color and add the magnified result to the
origin frame.

In step C, the raw Photo-plethysmography (PPG) signal that was obtained
by the color-magnified result, will be sent to further processing, which includes
signal smoothing and a peak detection.

We utilize the average green channel from the magnified video frame se-
quence, which is smoothed by a moving average filter aiming to reduce random
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noise while retaining its peaks as follows

y [i] =
1

n

j=0∑
n−1

x [i+ j] (1)

Where y is the output signal, x is the input signal, n is the length of queue.
The moving average filter views the successive sampled data as a queue of fixed
length n. After inserting a new data, the first data of the above queue is removed,
the remaining n-1 data are moved forward in turn, and the newly sampled data
are inserted as the tail of the new queue. Then the arithmetic operations are
performed on this queue and obtain the ith output result. The Loomo robot has
a self-balance movement, which is a periodical forward and backward movement.
This makes the relative position of the light source to change constantly in a cer-
tain interval, which needs to be considered and removed from the data. Finally,
the estimated heart rate is calculated by finding the peaks of the smoothed PPG
signal. Assume the number of series of frames is L, the frame rate is calculated
in FPS, and there are N peaks detected in this series of frames. The heart rate
in beats per minute (BPM ) is computed as follows:

BPM = 60
N × FPS

L
(2)

The result of implemented heart rate detection is displayed in Figure 7.

4 Evaluation

To quantify the effectiveness of our implementation, we ran an evaluation on our
added features: Localization and Human Activity Recognition (posture & heart
rate detection).

4.1 Feature Extension 1: Localisation

In terms of localisation, we have two parts in total. The UWB positioning system
is used for global positioning and navigation on the map, while each movement
in the local area is controlled using the robot’s built-in ultrasonic sensor in

Table 1. Linear Movement Test

Expected Distance: 100cm Expected Distance 200cm
Trial Actual (cm) Delta (cm) Error (%) Actual (cm) Delta (cm) Error (%)

1 99.6 0.4 0.4 197 3 1.5
2 98.2 1.8 1.8 202.8 -2.8 1.4
3 100.6 -0.6 0.6 195.4 4.6 2.3
4 96.4 3.6 3.6 198.7 1.3 0.65
5 102.8 -2.8 2.8 194.9 5.1 2.55
6 101.4 -1.4 1.4 202.6 -2.6 1.3
7 97.0 3 3 200.5 -0.5 0.25
8 97.5 2.5 2.5 199.3 0.7 0.35
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combination with the IMU using the PID algorithm. The UWB system has
already been experimentally determined to have a mean error of ±20 cm in
an indoor environment following studies by Leugner et al. [42] and Schmidt et
al. [49]. Therefore, the performance of the robot’s internal navigation will be
evaluated here.

Test of Linear Movement In the test of linear movement, we have two con-
ditions. First we let the robot travel 1 meter along a straight line and afterwards
2 meters. For both conditions, we measured the distance from its starting point
and calculated the error. The purpose is to test the accuracy of a single move
and the effect of different distances on the accuracy.

As shown in table 1, through eight trials, when the robot advances 1 meter,
with the help of our sensor approach, its endpoint difference averages at 2.01 cm.
At the second condition, the average difference was at 2.58 cm when advancing 2
meters. A paired t-Test T(7) = -0.64, p = 0.27, showed the deviations occurring
at 1 meter (M = 2.01 cm; SD = 1.16 cm) and at 2 meters (M = 2.58 cm;
SD = 1.69 cm) to be not statistically different. The average error of 1.65 % is
substantially smaller than that of the UWB positioning system. However, the
UWB system does not accumulate errors over time.

Test on Angular movement Since the UWB positioning system does not
measure angles, the global and local angle indications are all dependent on the
IMU, which require high accuracy. In our angular movement test, we let the
robot rotate 45 degrees and 90 degrees on the ground, while we marked the
starting and ending positions in order to calculate the errors.

Table 2. Angular Movement Test

Expected Angle: 45° Expected Angle: 90°
Trial Actual (°) Delta (°) Error (%) Actual (°) Delta (°) Error (%)

1 44.23 0.77 1.71 88.85 1.15 1.28
2 43.36 1.64 3.64 90.46 -0.46 0.51
3 41.34 3.66 8.13 89.8 0.2 0.22
4 44.19 0.81 1.80 91.45 -1.45 1.61
5 43.33 1.67 3.71 91.55 -1.55 1.72

As shown in table 2, through five trials, the average difference of the robot
was 1.71 degrees at 45 degrees of rotation. When Loomo rotates 90 degrees, the
average difference is at 1.07 degrees. A paired t-Test T(4) = 1.002, p = 0.18,
showed the deviations occurring at 45 degrees (M = 1.71°; SD = 1.17°) and at
90 degrees (M = 0.96° ; SD = 0.6°) to be not statistically different. We consider
the overall deviation of 1.34° of angular movement to be quite high. Even if the
error of angular measurement accumulates over an extensive time period of use,
we have the UWB system to correct the location.
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4.2 Feature Extension 2: Human Activity Recognition

Posture Detection As we used a related work, namely Google’s ML kit, to
extract the feature points and human skeleton, there is no point in evaluating
their trained model, which seems sophisticated to us. The implementation runs
stable and in real-time. Our rule-based classification also showed great accuracy,
but which showed difficulties at different distances between human and robot.
Therefore, we measured the detection accuracy with four different distances.
Each posture was executed in four distances. This was repeated 20 times, which
resulted in 240 trials in total. The result is displayed in the Table 3.

Table 3. Successful detection rate by distance in percent (20 trials each).

Distance d (m) Normal (%) Warning (%) Danger (%)

d < 1 75 15 25
1 ≤ d < 5 85 75 70
5 ≤ d < 10 90 85 80
10 ≤ d < 20 70 75 75

From the table, we can obtain that the probability of getting an accurate pose
within a certain measurement distance seems to be different. However, there is
no statistical detection difference between all three postures (F2,6=1.71; p=0.26)
following a one-way ANOVA for correlated samples. The average success rate is
68.3% (SD = 23.5%) among all distances. Not considering distances shorter than
1 meter, the average detection rate raises to 78.33% (SD = 7.1%)

It is striking that the successful detection seems to be compromised with
distances below 1 meter. This is indicated by a one-way ANOVA for correlated
samples (F3,6=1272.22; p=0.039) and finally evidenced by a post-hoc analysis
using a Tukey HSD Test. The detection rate is significantly lower in distances <
1 m than distances between ≤ 5 m and < 10 m (p<0.05). No further differences
were found.

Generally, it become obvious that sufficient detection with too close distances
may not be guaranteed. The reason is that the identification of the posture is
accomplished by calculating the relative position of the detected landmarks.
Therefore, this detection and identification work well when the needed body
landmark is included in the frame. However, if some of the body landmarks are
not captured by the input frame, the information about his landmark will be
missing. Thus, reducing the success rate of the obtained results. The detection
error caused by missing landmarks is particularly noticeable at short distances
because the camera cannot capture the whole body of the inspector well.

Heart Rate Detection To gain insights into the performance of Loomo’s newly
acquired heart rate detection, we ran a study with 13 participants (Computer
Science students aged between 21 and 26). As ground truth of heart rate, we
used a Pulse Oximeter and the Apple watch Gen. 5, which showed almost no
difference and is in line with the findings from Pipek et al. [50]. For each user
we conducted a single measurement. The study results are shown in Table 4.
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Table 4. Study results: Showing the calculated heart rate by Loomo against the ground
truth [in bpm]

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

Loomo (bpm) 83 65 74 78 69 67 75 68 70 74 61 73 67
Ground Truth (bpm) 110 81 75 96 81 72 88 82 80 80 66 78 76
Difference (bpm) -27 -16 -1 -18 -12 -5 -13 -14 -10 -6 -5 -5 -9

The study results show a mean deviation of -10.84 heart beats per minute.
Loomo’s calculated heart rate is 87.3% accurate to the ground truth. We ran
a Bland-Altman analysis, which ensured no bias to exist. This is confirmed by
a Pearson correlation, which showed a positive correlation coefficient, with an
average of r = .83 (SD = .69). All participants demonstrated a statistically
significant positive relationship (r > .7, p < .05 ). However, it must also be stated
that the heart rate sometimes showed wide range, differing of up to 27 beats,
which is almost 25% (P1). Also striking is that Loomo provided a constantly
lower heart rate than the actual ground truth. We suspect our noise filter to
have canceled out the rather weak heart beats. Although this heart rate detection
method is not able to extract the exact pulse signal, Loomo still achieves the
goal of identifying vital signs, which is the overarching goal in this research.

5 Discussion

In this section, we would like to critically discuss the limitations of our work and
to provide possible approaches to overcome these:

Classifying Critical Postures: Currently, we drove a quick’n dirty approach
to classify three critical stages of posture by calculating the relations of the pose
landmarks to each other. Although this approach showed to be fine, one could
employ a training a simple ML-model, such as using a simple C4.5 decision tree.

Coping with Loomo’s self-balancing movement: Since Loomo is standing on
two wheels only, it deployes a bouncing back and forward movement to avoid
the robot to fall over. These periodic movements impact all sensor data. There
are several approaches that can be used to eliminate these signal in the sensor
data, such as deploying a butterworth filter, a principle component analysis, etc.

Valid Vital Signs: Collecting accurate vital signs, such as the correct heart
rate, is a challenge. For a remote PPG signal detection, like ours, we see a vari-
ety of environmental factors, such as changing ambient light, shadows, natural
movement of user, etc. that can impact the measurement significantly. In our
use case clinical valid data is not required, however, it is desirable.

Improving Heart Rate Detection: The simple moving average filter seems not
to be the perfect choice to handle the raw PPG signal. This is because rather
weak heart beats might be smoothed to much this way. A better approach might
be the signal peak detection algorithm, such demonstrated by Jang et al. [51].

Increasing number of Add-ons: Loomo already provides rich functionality
with the standard sensors provided. Adding a variety of unique sensors to Loomo
might open up new application field or enhance Loomo’s capabilities to make
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autonomous decisions. For instance, attached gas sensors may provide crucial
information on the environment. Moreover, using electric field sensors can help
deciding whether danger by electric dives occurs or whether human body activity
is present.

Deployment in Reality: In this research, we provided a proof-of-concept im-
plementation, showcasing future opportunities. In reality, however, a greater
number of studies and development is required. For instance, it is unclear how
the form factor of a dual-wheeled robot like Loomo can overcome obstacles. In a
disaster situation, such as when a certain gas like carbon monoxide is released,
Loomo could help in finding survivors. However, in an earth quake situation
when a building structure is destroyed, Loomo is likely to fail in making its
way through rough terrain. Further it is unclear how false-positives and true-
negatives are handled, such as missing out on finding an immobilized person,
because a body part might be covered. Another problem is finding the face in
unconventional positions. Therefore, it is at least questionable whether a fu-
ture robot can yet to be fully autonomous or whether human remote control is
required for support.

Robust Infrastructure: A future implementation is required to have a robust
communication system that needs to be put in place, on a software and hard-
ware level. High bandwidth seem to be a basis for video-streaming that may be
essential in a disaster scenario, so the robot can also be remotely controlled by
a rescue team. Further some type of position system is required to be in place,
which may account to as an additional cost as well as being another source of
potential error.

Intelligent Path Planning Algorithm: What is the quickest way? Advanced
path planning may be required to enable to robot to make intelligent decisions
on its own without being remotely controlled, such as when a network connection
broke down. Is there a safe area? Where is the robot going once followed?

Improving Navigation by SLAM: In this project, the effects and possibilities
of multi-sensor fusion are tried in the direction of a fire-fighting robot. However,
because of the involvement of external position system. There is high require-
ment of deployment environment. Plus, a receiver mounted makes the robot too
large in size. So a better substitution of UWB position system is visual SLAM.
With the help of in-built camera, visual SLAM can decrease the demand of
environment and make robot more flexible during task.

Feature Point Extraction: The feature points are extracted between frames
by ORB method, which is an algorithm that can figure out the same points in
two pictures continuously taken [52]. Feature point extraction matters both in
SLAM and posture recognition that when doing image processing we can only
take feature points in account, and thus reduce computation burden greatly.

6 Conclusion & Future Work

The Loomo Segway is one of the few consumer robots that offer high mobility,
increased computing power, and sensing capabilities. Unfortunately, Loomo is
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only used for entertainment purposes and does not make use of its potential.
Yet, in addition to a follow function that works questionably well, the device is
only controlled manually, while it cannot understand a persons condition. In this
paper we showcased a new application, a proof-of-concept of an affordable rescue
robot that may be deployed in evacuation scenarios. We demonstrated how to
instrument Loomo, in order to navigate autonomously through an indoor space.
Further, we showed how to estimate a victims activity state, by classifying their
posture and detecting their heart rate, both by using an optical RGB camera
approach. We evaluated the detection quality of our approach and conclude as
follows to our research questions. RQ1: We can enable Loomo to autonomously
navigate through a known environment by equipping it an external UWB posi-
tion system and driving a SLAM-approach. RQ2: We can we enable Loomo to
understand the human’s critical activity by extracting posture and heart rate
information from the RGB-camera feed.

By combining these two techniques, in future rescue robots can be improved
by not only reducing the cost but also enhancing their ability to recognize the
victim’s health condition. Particularly the application of SLAM algorithms allow
robots to autonomously perceive and explore their environment, which is a future
direction for investigation. Combined with path planning algorithms, unmanned
autonomous search-and-rescue robots seem promising. We see the application in
evacuation scenarios where the robot sends the location of injured people to the
rescue team. Its unmanned nature means that it can be deployed in hazardous
environments and with multiple units to effectively increase search and rescue.
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