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ABSTRACT
In this paper, we present a wearable augmentation device that ul-
timately aims to substitute and extend olfactory sensation. The
device utilizes gas sensors mounted on the wrist, combined with
a trained machine learning model, to discriminate liquids such as
water, alcohol, fluid accelerant, and vinegar. The device aims to be
useful in cases where the sense of taste and smell are compromised,
such sometimes occuring during a COVID-19 infection. The paper
also discusses potential advancements for this technology to be
utilized in a variety of ways, beyond just substituting a broken
sense, and how it aligns with the vision of early HCI pioneer Dou-
glas Engelbart, and the concept of Assistive Augmentation. The
paper concludes that this technology, in combination with artificial
intelligence, has the potential to enrich our physical experience
and bring us closer to the idea of a "Cyber-Human" in the future.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Applied computing→ Health informatics.
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1 INTRODUCTION
Extending the human’s capabilities has envisioned by an early HCI
pioneer, Douglas Engelbart [8]. Utilizing wearable user interfaces
to substitute broken senses and as a natural extensions of our body
is meanwhile denoted as Assistive Augmentation [13]. Pattie Maes
[15] and other researchers [9] belief that new sensing technology
in combination with artificial intelligence will enrich our physical
experience in future once technology successfully integrates within
our bodies [18]. This seems to be the way to our inevitable future,
the Cyber-Human [2].

This paper follows the envisioned trend mentioned while asking;
How can we integrate an artificial olfactory sensor within our body
for sensory substitution and body extension?

In this research, we attached a MEMS gas sensor to the human’s
wrist, as this body position seems to provide sufficient degrees of
freedom and a seamless integration [10, 17].

Our concept can be useful to provide as a substitution for Anos-
mia (complete loss of smell), hyposmia (smelling disorder), and
parosmia (odors aremisinterpreted).With the prevalence of COVID-
19, the loss of smell and taste seems to be a common side effect [12],
demonstrating the usefulness of our augmentation.

In this paper, we contribute:

• a proof-of-concept that enables the discrimination of four
typical household liquids found in the kitchen: water, alcohol,
fluid accelerant, and vinegar

• a number of ideas for the further development of the system
including future application scenarios.

2 RELATEDWORK
2.1 Background
Olfactory perception, or the sense of smell, is important for a variety
of reasons. It plays a role in the detection and identification of odors,
which can be used to locate food, identify potential mates, and
detect potential dangers, such as smoke or gas leaks. Additionally,
olfaction is closely linked to the limbic system, which is involved in
emotional processing, memory, and behavior, so it plays a role in
emotional responses, memories and sexual attraction [22]. Olfactory
dysfunction can also be an early indicator of neurological disorders
such as Alzheimer’s disease [3].
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The sensitivity of the human olfactory system is incredibly high,
allowing us to detect and distinguish between a wide range of odors.
Still, it is not as high as the visual or auditory system. Humans can
distinguish between a large number of different odors, but not as
many as the number of colors or sounds [19].

Sensitivity can vary depending on the individual and the specific
odor being detected. Additionally, sensitivity can be affected by
factors such as age, disease, and exposure to certain chemicals
[11, 23].

Overall, olfactory perception is a complex process that involves
both sensitivity and resolution, with these abilities varying depend-
ing on the specific odor being detected and the individual perceiving
it. Moreover, human shows an "adoption phenomenon", meaning
that smells become not perceivable after a certain while of exposure
or when introduced slowly over time. This can become a danger
and thus gas sensors are developed to support here.

2.2 MEMS Sensors
MEMS (Micro-Electro-Mechanical Systems) sensors are tiny de-
vices that combine mechanical elements, such as levers, beams, and
membranes, with electronic components, such as transistors and
sensors. These sensors can be used for a wide variety of applica-
tions, including accelerometers for measuring motion, gyroscopes
for measuring orientation, and pressure sensors for measuring force.
They are used in many consumer electronic devices, automobiles,
and industrial applications. MEMS gas sensors are the state-of-the-
art in gas detection that provide an adaptable solution for various
use cases. Their size can also allow for utilizing a combination of
them in an assembly without and drastic size increase as seen with
other gas sensors [20].

Metal Oxide (MOX) Sensors are use metal oxide semiconductors
to detect gases. A MOX sensor can be incorporated into a MEMS de-
vice to achieve a tiny form factor. MOX sensors are commonly used
for sensing gases such as oxygen, carbon monoxide, and volatile
organic compounds. The sensor works by measuring the resistance
of the metal oxide material, which changes in the presence of spe-
cific gases. They are known for their high sensitivity and low cost,
making them suitable for a wide range of applications including air
quality monitoring, industrial process control, and safety systems
[26].

Figure 1: Left is showing the components, which are a
wired gas sensor break-out board, Wio Terminal, 10,000mAh
VARTA powerbank, Velco strips, sock, and a USB cable. The
middle photo shows the sensor mounting at thw wrist. Right
image shows the screen displaying the classifies substance.

2.3 Applications
Besides typically known applications, such as sensing smoke and
fire [6], other applications have been showcased in research. For
instance, recently Zhang et al. [27] demonstrated a whiskey identi-
fication with an "electronic noses" that can identify subtle changes
in substances. It has an assumable increasing detection sensitivity
to an untrained human nose. The authors show how their artifact
can identifying different types of whiskey [27]. In another project,
Benjamin Cabé [5] showcased how an artificial nose can distinguish
between the smell from coffee, whiskey, and bread using a gas sen-
sor that can detect CO and NO2. Cabé 3d-pinted an human-looking
nose, built-in a microcontroller and trained a neural network on
it [5]. A forearm augmentation to enhance environmental aware-
ness of odor signals via a translation into vibrotactile stimuli was
proposed by Choi et al. [7]. The authors utilize a MQ-3 gas sensor
to detect alcohol. Next to an olfactory augmentation device that
complements or replaces human senses, researchers experimented
using odors to enrich experiences in HCI [1, 14, 16].

3 NOSEWRIST
3.1 Implementation
3.1.1 Hardware. There are two key components: a gas sensor
and Wio Terminal board (see Figure 2). The sensor is a multichan-
nel gas sensor breakout-board1 that provides stable and reliable
gases detecting function with four gas-sensors (GM-102B; GM-
302B; GM-502B; GM-702B). It can detect Carbon monoxide (CO),
Nitrogen dioxide (NO2), Ethyl alcohol(C2H5CH), Volatile Organic
Compounds (VOC) and others.

Figure 2: Schematics of wiring of the gas sensor break-out
board to the Wio Terminal.

The break-outboard is connected to the Wio Terminal2 via the
I2C protocol and driven by 3.3V fed from the Wio board. The Wio
Terminal is a prototyping platform using an ATSAMD51-based
microcontroller. It incorporates embedded sensors, such as an Ac-
celerometer, Microphone and a Light & IR Sensor. Also, it uses both
Bluetooth and Wi-Fi Wireless connectivity powered by Realtek
RTL8720DN and fully compatible with Arduino and MicroPython.
The Wio Terminal itself has an integrated 2.4” LCD Screen, which
can be used to show information (see Figure 1).
1https://www.seeedstudio.com/Grove-Multichannel-Gas-Sensor-v2-p-4569.html
2https://www.seeedstudio.com/Wio-Terminal-p-4509.html
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Figure 3: Showing the raw data as collected from the sensor board. The stimulus presented to the sensor is shown on top.

3.1.2 Machine Learning. To accomplish our goal of identifying
different substances, we selected a machine learning approach. As a
straight-forward solution, we decided to use the tool EdgeImpulse3
for supervised learning. Meaning, we recorded all substances while
holding the sensor over them. The training data was rather short
and incorporated 30s per substance. On top of that, we recorded a
default-class, when no substance is present. Our input trajectories
are four data streams provided by the sensor board. The data is
sampledwith 10Hz.We trained a TinyML neural network offered by
EdgeImpulse. The model’s layer architecture looks like as follows:
Raw Data -> Relu (weights: 20x56, bias: 20) -> Relu (weights: 10x20,
bias: 10) -> Dense (weights: 5x10, bias: 5) -> Softmax -> State Output.
In total we recorded a total of 5:21 min data and split it into 72% for
our training set (3:51 min) and 28% for the test set (1:30 min). We set
a sliding window approach with 10% overlap to previous samples,
while our window size was 1 second. To ensure convergence of
our model, we trained it with 500 epochs and achieved an overall
accuracy of 95.65%. We consider this number as rather theoretical
as the real-time implementation seemed not to be that robust. To
enable a real-time classification without having the device attached
to the computer, we uploaded the model to the Wio Terminal.

For the detection, we decided tomanually trigger theML-pipeline
by pressing the blue button on the Wio Terminal. We record 1.5s of
samples and let the model decide what substance might be present.
The result is displayed via a label on the Terminal’s display (see
Figure 1).

3.2 Demonstrated Application
There are several scenarios where artificial noses, that outperform
human olfactory sensation, can support the human. We demon-
strate only one useful example application. An artificial nose at-
tached to the wrist can be useful to provide as a substitution for
Anosmia (complete loss of smell), hyposmia (smelling disorder),
and parosmia (odors are misinterpreted). We selected four typical
liquids that can be found in a household and which are only dis-
tinguishable via its smell, since their viscosity and appearance are
similar to the human eye (see Figure 4). Drinking the "wrong" liquid
is dangerous and may result in permanent damage of the human
internal tissue.

3https://www.edgeimpulse.com

With our approach, we are able to correctly identify these four
liquids when putting the wrist over the glass, such as before drink-
ing. However, as seen in the graph displaying the sensor data, there
are certain limitations. Particularly after presenting alcohol to the
sensors, we can perceive an enormous peak (see Figure 3). This, on
the one hand, makes alcohol easily detectable, however, detecting
ambient or water just the moment after alcohol will likely result
in a false recognition. This is because the sensor underlie a certain
"cool down" as seen in the figure.

In a future these sensors could be implemented as an alternatives
or as a substitution in utilizing an artificial nose with MOX sensors.
This specialization can be focused on common harmful gases with
the ’00x’ and ’30x’ series, more chemical-based gasses with the ’13x’
series, natural gases with the ’21x’ series, or air quality with the
’AQ’ series. Use cases could also implement multiple sensors from
each category to provide a wider basis for identification methods
such as neural networks. Some gases present here such as carbon
monoxide are unscented and could provide an extension of the
human nose if utilized in an augmentation feature such as the wrist
nose. Besides the ’MQ’ series metal oxides sensor variants there
its also alternative MEMS sensor types with optical and acoustic
detection systems. These sensors could expand the use cases such
as medical diagnoses that the MOX sensors would not otherwise
identify.

Figure 4: In our demonstration, we classified next to air, our
default-class "ambient" and four substances, which are: water,
vinegar, accelerant, and alcohol. The wrist is to be held just
above the glass that contains the substance of desire. A press
on the blue button triggers the detection process.

https://www.edgeimpulse.com


MuC ’23, September 03–06, 2023, Rapperswil, Switzerland Matthies, et al.

Table 1: Suitable Gas Sensors that are currently available.

Model No. Detection Capability Model No. Detection Capability

MQ-2 Methane, Butane, LPG, smoke MQ-3 Alcohol, Ethanol, smoke
MQ-4 Methane, CNG Gas MQ-5 Natural gas, LPG
MQ-6 LPG, butane gas MQ-7 Carbon Monoxide
MQ-8 Hydrogen Gas MQ-9 Carbon Monoxide, flammable gasses
MQ-131 Ozone MQ-135 Benzene, Alcohol, smoke
MQ-136 Hydrogen Sulfide gas MQ-137 Ammonia
MQ-138 Benzene, Toluene, Alc., Acetone, Propane, Formaldehyde MQ-214 Methane, Natural gas
MQ-216 Natural gas, Coal gas MQ-303A Alcohol, Ethanol, smoke
MQ-306A LPG, butane gas MQ-307A Carbon Monoxide
MQ-309A Carbon Monoxide, flammable gasses MG811 Carbon Dioxide (CO2)
AQ-104 Air quality AQ-2 Flammable gasses, smoke
AQ-3 Alcohol, Benzine AQ-7 Carbon Monoxide

4 POSSIBLE ADVANCEMENTS
Sensors: In this paper we describe the use of MEMS gas sensors
mounted on the wrist as the primary means of detecting and distin-
guishing different liquids. An advancement would include exploring
different types of sensors, such as electronic nose sensors or other
chemical sensors, and determining their effectiveness for this and
other applications.

Machine learning model: Also, we utilize a machine learning
model to discriminate between different liquids as this can be con-
sidered the state-of-the-art. An advancement would include explor-
ing different types of models, conventional and different neural
networks architectures, with the ultimate goal of determining the
effectiveness for such applications.

Detection delay: To overcome the detection delay, we envision
to use redundant sensors which could shutter every few seconds.
As our sensor board is particularly designed to detect alcohol, we
suggest to add a number of different sensors (see Table 1), so other
substances are also easier detectable.

Wearable design: Augmenting the human body is described by a
wrist-mounting as the primary means of delivering the olfactory
augmentation. However, a potential further development includes
exploring different forms of wearable devices, such as a ring or a
pendant, and determining which provide the most seamless inte-
gration with the body. Another option is going beyond wearables
and tapping into implant-like devices.

User interface: The current implementation of the user interface
is a button that needs to be pressed. In future one would explore
different ways for the user to interact with the device and with the
environments, such as through an implicit way of interaction and
by a feedback loop through the smartphone and other devices.

Use cases:We see the technology to have potential to be utilized in
a variety of other ways, beyond just substituting a broken sense. An
advancement would include exploring different use cases, such as in
the culinary industry, or for people with certain medical conditions,
and determining which are most practical and beneficial.

Safety and security: Although often neglected in this type of
research, one should also explore the consideration of safety and
security aspects, as well as how to ensure the privacy of the user
and data.

Human factors: Finally, one needs to consider how to make the
device comfortable to wear and use, how to ensure it doesn’t cause
any discomfort, and how to make it accessible to people with dif-
ferent abilities.

5 APPLICATION SCENARIOS
Scenario 1 - Warning of Hazardous Substances: A wearable gas sen-
sor mounted to the wrist could warn of hazardous substances by
detecting and identifying specific chemicals present in the air. The
sensor would be connected to a device that would analyze the data
similarly to the Wio Terminal and trigger an alarm or warning to
the user once a hazardous chemical is identified. The warning could
be a visual, auditory or haptic, for example, a vibration or a sound.
A cloud-based machine learning could allow for up-to-date classi-
fications and be calibrated to detect a specific range of chemicals
that are known in the database of known hazardous substances.
A real-time monitoring of the concentration level could provide a
recommended course of action, such as evacuating the area or seek
medical attention.

Scenario 2 Identify Individuals: There are conditons at which hu-
mans are unable to recognize familiar faces, such as Alzheimer. In
bad light conditions, camera sensing is compromised. Analyzing
specific chemicals present in the air, such as a person’s breath or
sweat is another opportunity to help here. This would require a so-
phisticated machine learning model and sensor calibration to detect
and distinguish the unique chemical signature of an individual. One
way to achieve this would be to train the machine learning model
on a large dataset of chemical signatures from different individu-
als, and then use this trained model to identify individuals based
on new sensor readings. It’s worth noting that there are several
limitations to consider. For example, factors such as changes in
diet, medication, and medical conditions could affect the chemical
signature of an individual, and make identification less reliable.
Also important to consider are ethical and legal implications when
identifying individuals, as it raises privacy and security concerns.

Scenario 3 - Tracking Hormone Balance: A wearable gas sensor
could be used to track hormone balance and identify ovulation by
detecting and analyzing specific chemicals present in the air, such
as hormones present in a person’s breath or sweat. A sophisticated
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machine learning model may be trained on a large dataset of chem-
ical signatures, which might be also user-depended. From female
individuals, identifying different stages of their menstrual cycle,
and ultimately identifying ovulation might be feasible. The sensor
might be calibrated to detect a specific range of chemicals, such as
estrogen, progesterone, and luteinizing hormone (LH), which are
related to ovulation. This kind of technology might not replace a
medical diagnostic or advice, instead it could be used in conjunction
with other medical methods.

Scenario 4 - Blood Glucose Measurement: A sophisticated machine
learning model with gas sensor may enable the detection of unique
chemical signatures of glucose. Meanwhile, literature has proven to
measure the blood sugar value (𝛽-hydroxybutyrate) with concentra-
tion of breath acetone [25]. With an electronic nose it is possible to
detect a change in blood sugar [21, 24]. This method is non-invasive
and painless. However, it requires exploration, because of the incre-
mental changes happening over time. Previous laboratory studies
show promising results. However, in real-world the error-rate of
an neural network was 23,76% [24]. With more sophisticated sen-
sors, and different sensor positions, such as integrating these into
panties, results will improve, since glycemia is also present in urine.

Scenario 5 - Odem Classification: One way to achieve the identi-
fication of odem (breath) would be to train the machine learning
model on a large dataset of chemical signatures from individuals
with different breath qualities, such as healthy individuals and in-
dividuals with respiratory conditions, and then use this trained
model to classify breath quality based on new sensor readings. The
sensor would have to be calibrated to detect a specific range of
chemicals that are found in breath such as carbon dioxide, oxygen,
and volatile organic compounds (VOCs). The device could then
notify the user of their breath quality and provide feedback or rec-
ommendations, such as seek medical attention or try to improve
breathing techniques. Also, unpleasant odor could be detected and
suggestions could be made by the system.

Scenario 6 - Pollen Measurement: Allergy sufferers could benefit
from the detection of specific pollen by chemicals present in the air.
As previously envisioned, we suggest to train a machine learning
model on a large dataset of chemical signatures from different
types of pollen. The system would have to be calibrated to detect a
specific range of chemicals that are found in pollen such as proteins,
enzymes, and lipids. The device could then notify the user of the
presence of a specific type of pollen and its concentration level,
which could help allergy sufferers to take preventative measures
such as taking medication or avoiding certain areas.

6 CONCLUSION & FUTUREWORK
In this paper, we demonstrated a proof-of-concept body augmenta-
tion - a wrist-mounted olfactory system. We showed the discrimi-
nation of four typical household liquids such as water, alcohol, fluid
accelerant, and vinegar. Furthermore, we explored and discussed
the further developments for olfactory sensation augmentation.

In future, we envision to improve sensitivity by advancing the
prototype, such as incorporating a heated air chamber. To im-
prove response time, one can use redundant sensors and shutter
between them. Moreover, alternative feedback beyond a display is
to be explored. Related work has shown audio feedback via bone-
conduction to be an alternative [4].
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